六年级解方程综合题:妹妹先出发10分钟,哥哥以每分钟比妹妹快20米的速度追赶,20分钟后追上妹妹,求妹妹的步行速度是多少?
六年级解方程综合题:妹妹先出发10分钟,哥哥以每分钟比妹妹快20米的速度追赶,20分钟后追上妹妹,求妹妹的步行速度是多少?
这道题其实特别贴近生活——就像早上上学时,弟弟磨蹭先出门,姐姐发现后加快速度去追,最后在校门口碰面的场景。那妹妹到底走了多快呢?
一、理清题目里的关键信息
先别急着列方程,把题目拆开看更清楚:
- 时间差:妹妹比哥哥早出发10分钟,相当于妹妹有10分钟的“提前量”。
- 速度关系:哥哥每分钟比妹妹快20米,比如妹妹走1步,哥哥能走1步+20米。
- 追赶过程:哥哥出发后用了20分钟追上妹妹,说明哥哥只跑了20分钟,但妹妹总共跑了10+20=30分钟。
| 角色 | 提前出发时间 | 实际行走时间 | 速度与妹妹的关系 |
|------|--------------|--------------|------------------|
| 妹妹 | 无 | 10+20=30分钟 | 设为x米/分钟 |
| 哥哥 | 10分钟 | 20分钟 | (x+20)米/分钟 |
二、用“路程相等”建立方程
追上时,两人走的总路程一定相同!这是解题的核心。
- 妹妹的路程 = 她的速度 × 她的时间 = x × 30 (因为提前10分钟,加上哥哥追的20分钟)。
- 哥哥的路程 = 他的速度 × 他的时间 = (x + 20) × 20 (他只跑了20分钟)。
因为最后追上,所以两者路程一样:
x × 30 = (x + 20) × 20
三、解方程的具体步骤
接下来就是小学阶段的解方程操作了:
1. 展开右边的式子:
30x = 20x + 400 (分配律:(x+20)×20 = 20x + 400)
-
把含x的项移到左边,常数项留在右边:
30x - 20x = 400 → 10x = 400 -
求出x的值:
x = 400 ÷ 10 = 40
所以,妹妹的步行速度是每分钟40米。
四、验证答案是否合理
数学题解完要代入原题检查!
- 妹妹速度40米/分钟,走了30分钟 → 路程 = 40 × 30 = 1200米。
- 哥哥速度40+20=60米/分钟,走了20分钟 → 路程 = 60 × 20 = 1200米。
两人都走了1200米,确实同时到达同一位置,答案正确!
五、联系实际的思考
这种题型在生活中太常见了——比如家长送孩子上学,孩子提前跑出去玩,家长发现后加快脚步追;或者跑步时同伴先起跑,自己加速追赶。理解这类问题不仅能提升数学能力,还能帮我们分析生活中的时间与速度关系。
对六年级学生来说,关键是抓住“两人路程相等”这个本质,再通过设未知数、列方程一步步解决。多练几道类似题目,以后遇到追赶、相遇问题都能轻松应对~

蜂蜜柚子茶